Starts an interactive app to manually validate the output of an LLM stored in a character vector
Source:R/ai_validate.R
ai_validate.Rd
This function launches a Shiny app that allows users to manually validate
the output of a LLM analysis, such as ai_score
The comments from manual validation for each text are added as an additional
docvar to the input data with all texts not yet validated as NA
.
Usage
ai_validate(
text,
llm_output,
llm_evidence = NULL,
result_env = new.env(),
...,
verbose = TRUE,
launch_app = TRUE
)
Arguments
- text
a character or quanteda::corpus object containing the documents to be manually validated
- llm_output
a character string; the name of the LLM output column which contains the summaries, labels, or scores to be validated
- llm_evidence
a character vector; the name of an additional LLM output such as evidence or justifications provided by the LLM
- result_env
An environment to store results and allow resuming
- ...
additional arguments passed to
chat_fn
- verbose
logical; output a progress indicator if
TRUE
- launch_app
Logical, whether to launch the interactive Shiny app. Defaults to TRUE.
Value
character; the response from the manual validation with a length equal to the number of input documents, with the elements named with the input element names
Examples
if (FALSE) { # \dontrun{
library(quanteda)
summ1 <- ai_summary(data_char_ukimmig2010, chat_fn = chat_ollama, model = "llama3.2")
summ2 <- ai_summary(data_corpus_inaugural[1:2], chat_fn = chat_openai,
api_args = list(temperature = 0, seed = 42))
validate1 <- ai_validate(data_char_ukimmig2010, llm_output = summ1, verbose = TRUE)
validate2 <- ai_validate(data_corpus_inaugural[1:2], llm_output = summ2, verbose = TRUE)
} # }